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1 Discussion:

i) Briefly discuss the meaning of the local equilibrium assumption for discrete and continuous
systems

- For a discrete system, we can divide the full system into subsystems/cells, considered in equilib-
rium. Each cell can be of arbitrary size. The physics inside the cell i is then described by macro-
scopic extensive quantities relevant to thermodynamic equilibrium ({X(a)} ≡ U (a), V (a), N (a)).
In addition, the equilibrium definition of entropy holds inside each cell

dS(a) =
∑
i

∂S(a)

∂X
(a)
i︸ ︷︷ ︸

Y
(a)
i

dX
(a)
i =

1

T (a)
dU (a) +

p(a)

T (a)
dVi −

µ(a)

T (a)
dN (a) . (1)

- The same holds, in the continuous case, but now we take the limit of infinitely small cells and
define densities of the macroscopic quantities described by functions of space ( and time) i.e.
({xi(~r, t)} ≡ T (~r, t), p(~r, t), µ(~r, t)). The entropy density is now written as a function of space
and time as well

ds(~r, t) =
∑
i

∂s(~r, t)

∂xi︸ ︷︷ ︸
yi(~r,t)

dxi(~r, t) =
1

T (~r, t)
dε(~r, t)− µ(~r, t)

T (~r, t)
dn(~r, t) . (2)

Here we talk about a system with different timescales, a fast timescale (e.g. elastic collisions)
driving particles to local equilibrium and a slow timescale (e.g. external force) driving the whole
system to global equilibrium. We will discuss an example in future lecture in the context of a
plasma following a Boltzmann kinetic equation.

ii) Briefly discuss the meaning of affinities and fluxes for equilibrium and non-equilibrium systems

- When discrete cells in local equilibrium are allowed to exchange quantities (e.g. T, p, N..) this
leads to a flux of the quantity from one cell to the other. As entropy is additive, the total entropy
is the sum of the entropy of each cell. Due to conservation laws of the total system of all cells,

the total entropy only depends on extensive quantities of one system {X(a)
j }. One finds that the

entropy is written (as we will show in following exercise)

dStot

dt
=
∑
i

dStot

dX
(a)
i︸ ︷︷ ︸
Fi

dX
(a)
j

dt︸ ︷︷ ︸
Ji

=
∑
j

FiJi , (3)

where Fj are the affinities or general forces driving the system to global equilibrium and Jj are
fluxes of macroscopic quantity Xj describing the flow of these quantities as a consequence of the
affinity.
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- Analogously to the discrete system, in a continuous system the conservation laws lead to the
following expression for the entropy

∂s(~r, t)

∂t
+ ~∇. ~Js(~r, t) = σS(~r, t) , (4)

where ~Js(~r, t) is the entropy flux density and σS(~r, t) is the entropy production rate

σS(~r, t) =
∑
j

~Fj(~r, t). ~Jj(~r, t) . (5)

Now, both the affinities and fluxes are continuous, we write

~Fj(~r, t) = ~∇yi(~r, t) . (6)

2 In-class problems:

2.1 Containers

Consider a system composed of three isolated sub-systems A,B,C. Initially each system is in equilib-
rium, with internal energies UA0 , U

B
0 , U

C
0 , containing NA

0 , N
B
0 , N

C
0 molecules of an ideal gas in volumes

V A
0 , V

B
0 , V C

0 . Subsequently, the isolation is removed in such a way that sub-systems A and B can only
exchange heat with each other, while sub-systems B and C can exchange both particle number and
heat.

i) Express the global conservation laws and remaining constraints and deduce the possible varia-
tions of the extensive parameters

- Number conservation in A : dNA
dt = 0⇒ NA(t) = NA

0

- Number conservation between B and C : dNB
dt + dNC

dt = 0

- Total energy conservation : dUA
dt + dUB

dt + dUC
dt = 0

- Volume constraints : dVA
dt = dVB

dt = dVC
dt = 0

ii) Based on the possible variations of the extensive parameters, construct the expression for the
entropy production rate dStot/dt



2 In-class problems: 3

- Based on Gibbs’ fundamental equation : dS = 1
T dU + p

T dV −
µ
T dN ,

we write the entropy production rate:

dStot

dt
=

dSA
dt

+
dSB
dt

+
dSC
dt

(7)

=
1

TA

dUA
dt

+
1

TB

dUB
dt

+
1

TC

dUC
dt
− µB
TB

dNB

dt
− µC
TC

dNC

dt
(8)

(9)

Using dUC
dt = −dUA

dt −
dUB
dt and dNC

dt = −dNB
dt from last exercise, we write

dStot

dt
=

(
1

TA
− 1

TC

)
︸ ︷︷ ︸

FA↔CU

dUA
dt

+

(
1

TB
− 1

TC

)
︸ ︷︷ ︸

FB↔CU

dUB
dt
−
(
µB
TB
− µC
TC

)
︸ ︷︷ ︸

FB↔CN

dNB

dt
(10)

iii) Determine the equilibrium conditions for the system in terms of the intensive quantities T (i), p(i), µ(i)

in each sub-system

- In equilibrium we have dStot

dt = 0, Considering all allowed variations dX(a)
dt the following terms

vanish (
1

TA
− 1

TC

)
= 0⇒ TA = TC , (11)(

1

TB
− 1

TC

)
= 0⇒ TA = TB = TC , (12)(

µB
TB
− µC
TC

)
= 0⇒ µB = µC . (13)

Lastly, the volume of each cell does not change.

2.2 Ideal gas

Consider a a classical ideal gas of N identical particles described by the non-interacting Hamiltonian

HN ({x}, {p}) =
∑N

i=1
~p2i
2m .

i) Calculate the canonical partition function

ZC(T,N, V ) =
1

N !

∫ ( N∏
i=1

d3~xi d
3~pi

(2π~)3

)
e
−HN ({x},{p})

kBT

and determine the internal energy U = kBT
2 ∂
∂T logZC(T,N, V ).(

Cross-check: U = 3
2NkBT

)
- Due to the lack of interactions, the canonical partition function can be factorized as follows

ZC(T,N, V ) =
1

N !

(
N∏
i=1

∫
d3~xi d

3~pi
(2π~)3

e
−hi({x},{p})

kBT

)
=

1

N !
(z)N , (14)
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where hi({x}, {p}) is the single particle Hamiltonian written

hi({x}, {p}) =
~p2

2m
. (15)

And z is the integral

z =

∫
d3~x d3~p

(2π~)3
e
− 1
kBT

~p2

2m =
V 4π

(2π~)3

∫ ∞
0

dp p2 e
− 1
kBT

p2

2m , (16)

footnote 1
= V

(2mkBT )3/2

2π2~3

√
π

4
, (17)

= V

(
mkBT

2π~2

)3/2

, (18)

The full canonical partition function becomes

ZC(T,N, V ) =
V N

N !

(
mkBT

2π~2

)3N/2

. (19)

The internal energy is then

U = kBT
2 ∂

∂T
logZC(T,N, V )

footnote 2
= kBT

2 3N

2

∂

∂T
log T =

3

2
NkBT . (20)

ii) Calculate the grand-canonical partition function based on the expansion

ZGC(T, µ, V ) =
∞∑
N=0

e
µ

kBT
N
ZC(T,N, V ) ,

and determine the average particle number N = kBT
∂
∂µ logZGC(T, µ, V ).(

Cross-check: N = V
(
mkBT
2π~2

)3/2
e

µ
kBT

)
- Following the same approach as the previous example, the canonical partition function can be

factorized as follows

ZGC(T,N, V ) =
1

N !

(
N∏
i=1

e
µ

kBT
N
∫
d3~xi d

3~pi
(2π~)3

e
−hi({x},{p})

kBT

)
=

∞∑
N=0

1

N !
(ze

µ
kBT )N , (21)

= exp
{
ze

µ
kBT

}
(22)

where z is the integral

z = V

(
mkBT

2π~2

)3/2

, (23)

The grand canonical partition function becomes

ZGC(T,N, V ) = exp

{
V
(
mkBT
2π~2

)3/2
e

µ
kBT

}
. (24)

The average number is written

N = kBT
∂

∂µ
logZGC(T, µ, V ) . (25)

= kBT
∂

∂µ

{
V

(
mkBT

2π~2

)3/2

e
µ

kBT

}
= V

(
mkBT

2π~2

)3/2

e
µ

kBT . (26)
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iii) Based on your results, determine the equations of state T = T (U, V,N) and µ = µ(U, V,N)
expressing the intensive quantities T, µ in terms of the extensive variables U, V,N(

Cross-check: kBT = 2
3U/N and µ

kBT
= − log

[
V
N

(
mU/N
3π~2

)3/2
] )

- Using the identities for internal energy and average number

U =
3

2
NkBT , (27)

N = V

(
mkBT

2π~2

)3/2

e
µ

kBT , (28)

we write the EOS

T (U, V,N) =
2

3

U

NkB
, (29)

µ(U, V,N) = kBT log

{
N

V

(
mU/N

3π~2

)−3/2
}
. (30)

iv) Exploit the relation between the grand-canonical partition function −kBT logZGC = φG and
the grand-potential φG = U − TS − µN to derive the Sackur-Tetrode equation for the entropy
of an ideal gas

S(U, V,N) = NkB

{
5

2
+ log

[
V

N

(
4πmU

3N(2π~)2

)3/2
]}

- Equating the two definitions of the grand-potential we find the entropy of an ideal gaz

S(U, V,N) = kB logZGC +
U

T
− µ

T
N , (31)

= kB

{
V

(
mkBT

2π~2

)3/2

e
µ

kBT

}
+

3

2
NkB −NkB log

{
N

V

(
mU/N

3π~2

)−3/2
}
,(32)

replacing µ in the exponential with Eq. (30) cancels3, and we are left with

S(U, V,N) = NkB +
3

2
NkB −NkB log

{
N

V

(
mU/N

3π~2

)−3/2
}
, (33)

= NkB

{
5

2
+ log

[
V

N

(
4πmU

3N(2π~)2

)3/2
]}

, (34)

v) Based on the entropy function calculate the equation of state p = p(U, V,N) for the pressure of
an ideal gas. Convince yourself as a cross check that you re-produce the result pV = NkBT .

- The pressure is given by

p = T
∂S

∂V
= NkBT

∂

∂V
log(V ) , (35)

p =
NkBT

V
. (36)

1 We make use of the integral
∫
dx x2e−ax

2

=
√
π

4a3/2
.

2 We make use of the simple fact that ∂ log(xαy)
∂x

= α ∂ log(x)
∂x

+
∂ log(y)

∂x︸ ︷︷ ︸
=0

= α
x

3 We have V
(
mkBT
2π~2

)3/2
e

µ
kBT = V

(
mkBT
2π~2

)3/2
N
V

(
mU/N

3π~2

)−3/2

= N .
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3 Homework problems:

3.1 Heat and particle transfer between containers

Consider two containers A and B of identical vo-
lumina VA = VB each filled with a classical ideal
gas. Initially both systems are in equilibrium at
temperatures TA and TB and chemical potentials
µA and µB. Now a small hole of cross-section
S is drilled in the wall separating the contain-
ers A and B, allowing for exchange of particle
number and heat between the two containers. If
we assume that the particle density is uniform in
each container, the amount of particles flowing
through the hole can be calculated as

JA→BN =

∫
d3~p

(2π~)3

∫
S
d2~x

~n · ~p
m

f(~p) θ(~n · ~p) ,

where
∫
S d

2~x denotes the surface integral over the area of the hole, ~n is the direction normal to the

surface and f(~p) = e
µ

kBT e
− ~p2

2mkBT is the Maxwell-Boltzmann distribution for the momenta of particles
in an ideal gas.

i) Show that the particle flux JA→BN through the hole from container A to container B is given by

JA→BN =
1√

2πmkBTA
S pA

- The particle flux through the hole from container A to B is written

JA→BN =

∫
d3~p

(2π~)3

∫
S
d2~x

~n · ~p
m

f(~p) θ(~n · ~p) , (37)

= Se
µA

kBTA
1

(2π~)3

∫ ∞
0

p2dp

∫ 1

0
d cos θ

∫ 2π

0
dφ

(
p cos θ

m

)
e
− ~p2

2mkBT . (38)

Using Eq. (30) and performing the integration, we ontain

JA→BN = S

{
N

V

(
mUA/NA

3π~2

)−3/2
}

1

m(2π~)3
2π(mkBTA)2 , (39)

= S

{
N

V

(
mkBTA

2π~2

)−3/2
}

2π

(2π~)3
m (kBTA)2 , (40)

=
1√

2πmkBTA
S pA , (41)

ii) Determine the analogous integral expression for the energy flux JA→BE through the hole from
container A to container B. Show that JA→BE is given by

JA→BE =

√
2kBTA
πm

S pA
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- The energy flux through the hole from container A to B is written

JA→BE =

∫
d3~p

(2π~)3

∫
S
d2~x

~p2

2m

(
~n · ~p
m

)
f(~p) θ(~n · ~p) , (42)

= S

{
N

V

(
mkBTA

2π~2

)−3/2
}

1

(2π~)3∫ ∞
0

p2dp

∫ 1

0
d cos θ

∫ 2π

0
dφ

~p2

2m

(
p cos θ

m

)
e
− ~p2

2mkBT , (43)

=

√
2kBTA
πm

S pA (44)

iii) Determine the explicit form of the differential equations

d

dt
NA = JB→AN − JA→BN ,

d

dt
UA = JB→AE − JA→BE ,

which govern the relaxation of the particle number and the internal energy, assuming that both
sub-systems remain in equilibrium throughout the process.

- We write the change in the average number and internal energy of the container A as

d

dt
NA = JB→AN − JA→BN , (45)

=
1√

2πmkBTB
S pB −

1√
2πmkBTA

S pA , (46)

=
S√

2πmkB

(
pB√
TB
− pA√

TA

)
, (47)

d

dt
UA = JB→AE − JA→BE , (48)

=

√
2kBTB
πm

S pB −
√

2kBTA
πm

S pA , (49)

= S

√
2kB
πm

(
pB
√
TB − pA

√
TA

)
, (50)

iv) Expressing the internal energy and particle number in each sub-system in terms of the glob-
ally conserved quantity N tot = NA + NB and the difference between ∆N = NA − NB as
NA/B = 1

2

(
N tot ±∆N

)
(and similarly for UA/B), determine the equations of motion govern-

ing the relaxation of ∆N and ∆U . Linearize the equations of motion for ∆N � N tot and
∆U � U tot and determine the relaxation rates.

- ∆N obeys the following differential equation

d

dt
∆N =

d

dt
NA − d

dt
NB , (51)

= 2
(
JB→AN − JA→BN

)
, (52)

= 2
S

V
√

2πmkB

(
NBkBTB√

TB
− NAkBTA√

TA

)
, (53)

(54)
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Using NA/B = 1
2

(
N tot ±∆N

)
and TA/B =

2UA/B
3kBNA/B

= 2(Utot±∆U)
3kB(Ntot±∆N)

d

dt
∆N = 2

S

V
√

2πm

(
1

2

(
N tot −∆N

)√ 2(U tot −∆U)

3 (N tot −∆N)
(55)

−1

2

(
N tot + ∆N

)√ 2(U tot + ∆U)

3 (N tot + ∆N)

)
, (56)

' − SN tot

V
√

3πm

√
U tot

N tot

(
∆U

U tot
+

∆N

N tot

)
+O(∆N2,∆U2) . (57)

Analogously ∆U obeys the following differential equation

d

dt
∆U =

d

dt
UA − d

dt
UB , (58)

= 2
(
JB→AE − JA→BE

)
, (59)

= 2
S

V

√
2kB
πm

(
NBkBTB

√
TB −NAkBTA

√
TA

)
, (60)

' 4SU tot

3V

√
kB

3πm

√
U tot

N tot

(
−3

∆U

U tot
+

∆N

N tot

)
+O(∆N2,∆U2) . (61)

(62)

We write the coupled evolution equations

d

dt
∆N̄ = −Γ

(
∆Ū + ∆N̄

)
, (63)

d

dt
∆Ū = −4

3
Γ
(
3∆Ū −∆N̄

)
, (64)

(65)

where Γ = S
V
√

3πm

√
Utot

Ntot .

This system of equation can be written as a matrix vector problem

d

dt

(
∆N̄
∆Ū

)
= −Γ

(
1 1
−4

3 4

)(
∆N̄
∆Ū

)
, (66)

d

dt

(
∆N̄
∆Ū

)
= −ΓM.

(
∆N̄
∆Ū

)
. (67)

The matrix M admits the following Eigenvalues and their Eigenvectors

λ1 = −Γ
15 +

√
33

6
~v1 =

(
9−
√

33
8
1

)
, (68)

λ2 = −Γ
15−

√
33

6
~v2 =

(
9+
√

33
8
1

)
. (69)

(70)

The general solution of the differential equation is then written(
∆N̄(t)
∆Ū(t)

)
= C1e

−Γλ1t~v1 + C2e
−Γλ2t~v2 , (71)

where both relaxation rates −λ1/2 = −Γ15±
√

33
6 < 0 are decaying rates.


