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1 Discussion:

i) Discuss the definition, physical meaning and properties of entropy in classical and quantum
statistical system, and in the context of the Boltzmann equation.

ii) What is the form of the stationary solution of the Boltzmann equation for a homogenous system
in the absence of external forces? What is the difference between the concepts of balance and
detailed balance? What is the relaxation time approximation?

2 In-class problems:

2.1 Global equilibrium in the presence of a scalar potential

Consider a dilute gas of particles, whose dynamics is described by the Boltzmann equation, in the
presence of an external force ~F (~r) = −~∇~rV (~r) derived from a scalar potential V (~r)

i) Show that the global equilibrium solution is of the form feq(~r, ~p) = n(~r)
(

2π~2
mkBT

)3/2
e
− ~p2

2mkBT and

determine the spatial profile of density n(~r)

3 Homework problems:

3.1 Boltzmann gas in a harmonic trap

Consider a dilute gas of particles described by the Boltzmann equation(
∂

∂t
+

~p

m
~∇~r + ~F (~r)~∇~p

)
f(t, ~r, ~p) = C[f ](t, ~r, ~p) , (1)

in the presence of an external force ~F (~r) = −~∇~rV (~r) derived from a harmonic potential

V (~r) =
1

2
mω2~r2.

i) Determine the global equilibrium solution feq(~r, ~p) for this system.

ii) Show that for a generic function g(~r, ~p) of coordinates and momenta, the evolution of the average
of this quantity

〈g(~r, ~p)〉 ≡
∫
d3~rd3~p

(2π~)3
f(t, ~r, ~p) g(~r, ~p)

1
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is governed by

d〈g(~r, ~p)〉
dt

−
〈 ~p
m

~∇~rg(~r, ~p)
〉
−
〈
~F (~r) ~∇~pg(~r, ~p)

〉
=

∫
d3~rd3~p

(2π~)3
g(~r, ~p) C[f ](t, ~r, ~p) (2)

iii) Explain why for g(~r, ~p) = gN (~r) + ~g~p(~r)~p + ge(~r)
~p2

2m the right hand side of Eq. (2) vanishes
irrespective of the spatial dependence of the coefficient functions gN,~p,e(~r).

iv) Derive the explicit form for the equations of motion for the quantities epot(~r, ~p) = 1
2mω

2~r2,

ekin(~r, ~p) = ~p2

2m and ecorr(~r, ~p) = ω ~r·~p2 .

v) Based on your results in (iv) show that the Boltzmann gas in a harmonic trap can exhibit
oscillatory behavior in the long time limit, and therefore does not relax towards the global
equilibrium solution. Determine the frequency of oscillations.

3.2 Electric conductivity & eff. relaxation time of a Lorentz gas

Consider a dilute gas of light particles of mass m and heavy particles of mass M , dominated by
elastic interactions between light and heavy particles. Since the kinetic motion of heavy particles is
suppressed by their large mass, they can be described as static scattering centers; the dynamics of the
light particles is then governed by the kinetic equation for a Lorentz gas(

∂

∂t
+

~p

m
~∇~r + ~F ~∇~p

)
flight(t, ~r, ~p) = C[flight](t, ~r, ~p) (3)

C[flight](t, ~r, ~p) = nheavy
|~p|
m

∫
dΩ~p~p′

dσ

dΩ~p~p′
(~p→ ~p′)

[
flight(t, ~r, ~p

′)− flight(t, ~r, ~p)
]

(4)

where nheavy denotes the (uniform) density of heavy particles in the system, Ω~p,~p′ is the scattering
angle and dσ

dΩ(~p→ ~p′) denotes the cross-section for the interaction.

We will assume that the interactions are elastic and particle number conserving, i.e. the number of

light particles is conserved and the energy ∆E = (~p−~p′)2
2M transferred to the heavy particles is negligible.

Nevertheless, momentum can be transferred from light to heavy particles, i.e. the differential cross-
section dσ

dΩ(~p→ ~p′) is non-zero even when ~p 6= ~p′.

i) Show that local equilibrium solutions for f = flight are of the form

f (0)(t, ~r, ~p) = exp

(
−
ε~p − µ(t, ~r)

kBT (t, ~r)

)
, ε~p = ~p2/2m . (5)

What differences do you observe in comparison to local equilibrium solutions of the Boltzmann
equation for two-body interactions between light particles?

We will assume in the following that the differential cross section dσ
dΩ(~p → ~p′) is a function of of the

magnitude of the momentum |~p| = |~p′| and the scattering angle θpp′ only. We now consider the effect

of a constant external electric field ~E in the limit where the change in velocity due to the Lorentz

force between individual collisions is small compared to the thermal velocity q| ~E|
m τmfp � vth.

ii) Demonstrate that to leading order in q| ~E|
mvth

τmfp � 1, the stationary solutions to the Boltzmann

equation for a spatially homoegenous Lorentz gas are given by f(~p) = f (0)(~p) + f (1)(~p), where
f (0)(~p) is the local equilibrium distribution and f (1)(~p) is determined by

δC[f (1)](~p) = −q ~p · ~E
mkBT

f (0)(~p) , (6)
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where

δC[f (1)](~p) = nheavy
|~p|
m

∫
dΩ~p~p′

dσ

dΩ~p~p′
(~p→ ~p′)

[
f (1)(~p′)− f (1)(~p)

]
(7)

Based on the relaxation time approximation (RTA), the linearized collision operator δC[f (1)] is ap-
proximated as

δC[f (1)](~p)
∣∣∣
RTA

= −f
(1)(~p)

τR(ε~p)
(8)

with an energy dependent relaxation time τR(ε~p) and the functional form of the distribution f (1) is
given by

f (1)(~p)
∣∣∣
RTA

= qτR(ε~p)
~p · ~E
mkBT

f (0)(~p) . (9)

iii) Show that by equating δC in (7) and (8) and using the solution in (9) for the functional form
of the distribution f (1) the energy dependent relaxation time τR(ε~p) can be determined self-
consistently according to

1

τR(ε~p)
= 2πnheavy

|~p|
m

∫
d cos(θpp′)

dσ

dΩpp′

[
1− cos(θpp′)

]
(10)

(
Hint: By appropriate choice of coordinates you can express ~p · ~E = |~p|| ~E| cos(θp) and

~p′ · ~E = |~p′|| ~E| cos(θp) cos(θpp′) + sin(θp) sin(θpp′) cos(φp′)
)

iv) Determine the energy dependent relaxation time τR(ε~p) for the scattering off hard-sphere scat-

tering centers dσ
dΩpp′

= R2

4 and calculate the electrical conductivity σel for this model.


