Non-equilibrium physics WS 18/19 – Exercise Sheet 3:

Universität Bielefeld Instructors: Jun.-Prof. Dr. S. Schlichting, D. Schröder

1 Discussion:

i) What is the physical relvance of the different terms in the Navier Stokes equation?

$$\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right] = -\vec{\nabla} P + \zeta \vec{\nabla} \left(\vec{\nabla} \cdot \vec{v} \right) + \eta \left(\triangle \vec{v} + \frac{1}{3} \vec{\nabla} \left(\vec{\nabla} \cdot \vec{v} \right) \right)$$
(1)

2 In-class problems:

2.1 Shear-flow between two parallel moving plates

Consider an *incompressible* fluid, described by the Navier-Stokes equation with constant transport coefficients ζ, η . The fluid is confined between two parallel plates of infinite extent, separated by a distance d in the y direction and moving with different velocities velocities $\vec{v}_1 =$ $(-|v_1|, 0, 0)$ and $\vec{v}_2 = (|v_2|, 0, 0)$ in the $\pm x$ direction.

- i) Write down the equations of motion for the non-vanishing components of the fluid velocity \vec{v} .
- ii) Determine the stationary velocity profile $\vec{v}(x, y, z)$ of the fluid.

3 Homework problems:

3.1 Sound & shear waves

Consider a compressible fluid of constant density $\rho(t, \vec{x}) = \rho_0$, with an equation of state $p = c_s^2 \rho$ which is at rest $\vec{v}(t, \vec{x}) = 0$ in the laboratory frame. We will consider the propagation of density $\delta \rho$ and velocity perturbations δv , whose evolution is described by the linearized continuity equation and the linearized Navier-Stokes equation. We first consider so called sound waves, which are perturbations of the form

$$\delta
ho(t, \vec{x}) = \delta
ho_{\vec{k}}(t) e^{i \vec{k} \vec{x}} , \qquad \delta \vec{v}(t, \vec{x}) = rac{\vec{k}}{|\vec{k}|} \delta v_{\vec{k}, \parallel}(t) e^{i \vec{k} \vec{x}}$$

- i) Derive the linearized evolution equations for sound waves.
- ii) Show that the general solution for sound waves can be expressed in the form

$$\delta \rho_{\vec{k}}(t) = \sum_{\pm} c_{\vec{k}}^{\pm} \rho_0 e^{i\omega_{\pm}(\vec{k})t} , \qquad (2)$$

$$\delta v_{\vec{k},\parallel}(t) = \sum_{\pm} c_{\vec{k}}^{\pm} \left(\frac{-\omega_{\pm}(\vec{k})}{|\vec{k}|} \right) e^{i\omega_{\pm}(\vec{k})t} , \qquad (3)$$

and determine the dispersion relation $\omega_{\pm}(\vec{k})$. What differences do you observe between ideal $(\eta = \zeta = 0)$ and viscous fluid dynamics?

Next we will consider shear waves, which are velocity perturbations of the form

$$\delta \vec{v}(t, \vec{x}) = \delta \vec{v}_{\vec{k}, \perp}(t) e^{i\vec{k}\cdot\vec{x}} \tag{4}$$

which are transverse to the wave-vector \vec{k} , meaning that $\delta \vec{k} \cdot \vec{v}_{\vec{k}+}(t) = 0$.

- iii) Show with the help of the linearized continuity equation that shear waves do not induce density perturbations, i.e. that they are consistent with $\delta \rho = 0$.
- iv) Derive the linearized evolution equation for shear waves. Show that the solution can be expressed in the form

$$\delta \vec{v}_{\vec{k},\perp}(t) = \vec{c}_{\vec{k}} e^{+i\omega(\vec{k})t} , \qquad (5)$$

and determine the dispersion relation $\omega(\vec{k})$. What differences do you observe between shear waves and sound waves?

3.2 Flow in a donut pipe

Consider the flow of an incomprossible fluid in a "donut shaped" pipe of length l, with inner and outer radii R_1 and R_2 , as illustrated in the figure.

- i) Determine the velocity profile $v_x(r)$ for stationary transport, for a given pressure difference Δp between the two ends of the pipe $(r = \sqrt{y^2 + z^2}).$
- ii) Calculate the rate of mass transport (or discharge) $Q = \int d^2 \vec{\sigma} \ (\rho \vec{v})$ for the donut pipe.

